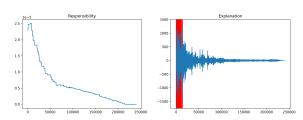
DMRN+20: DIGITAL MUSIC RESEARCH NETWORK

ONE-DAY WORKSHOP 2025 KING'S COLLEGE LONDON TUE 16 DECEMBER 2025


Validating Few-shot Bird Vocalisation Detection through Causal Explanations

Nico García-Peguinho¹, David Kelly², Melane Navaratnarajah²,

Hana Chockler² and Anna Xambó Sedó¹

Centre for Digital Music, Queen Mary University of London, UK, n.a.garcia-peguinho@qmul.ac.uk

Department of Informatics/King's College London, UK

(a) Causal responsibility for "blues" (b) Contrastive explanation for "blues" Figure 1: Removing frequencies in red causes misclassification to "classical" despite the signal retaining blues perceptual qualities, revealing the model's reliance on narrow feature sets.

Index Terms— Bioacoustics, Explainable AI, Few-shot Learning, Causal Explanations, Biodiversity Monitoring

I. Introduction

Biodiversity monitoring using deep learning on bioacoustic data is limited by sparse labeled data. Few-shot learning addresses this, but raises the question: to what extent do these models learn meaningful acoustic features or exploit spurious patterns? We investigate whether REX, a causal explainability method, can identify which acoustic features few-shot models rely on. We validate this on DCASE 2024 Task 5 bird vocalisations [1] before exploring Sensing the Forest natural recordings from Alice Holt forest, UK.

II. REX

REX [2] is a tool for explainble AI (XAI) based on actual causality [3]. Unlike popular XAI tools such as LIME [4] or SHAP [5], which produce *saliency maps* measuring feature contribution, REX finds causal explanations by isolating input features required to reproduce the original classification. These isolated features are a *sufficient cause* for that classification. We adapt and apply REX to audio data for the first time. Figure 1 shows a preliminary example of our interpretability method applied to a genre classification model, highlighting the frequencies classified as "blues".

III. SENSING THE FOREST

Sensing the Forest is a project exploring arts, science, and climate change. Two DIY, solar-powered, off-grid audio recorders [6] were deployed in Alice Holt forest to capture soundscape recordings over a year, aiming to support biodiversity monitoring and climate awareness through commu-

nity science [7]. This motivates our need for interpretable, validated models before applying bird vocalisation detection to the Sensing the Forest dataset.

IV. APPROACH

We will train prototypical networks on DCASE 2024 Task 5 BirdVox data using the official baseline system [8]. We will then apply REX to the trained model to identify minimal sufficient spectral-temporal features for bird event detection. Critically, we validate whether identified causal features align with established ornithological acoustic features, ensuring the model learns meaningful rather than spurious patterns.

V. EXPECTED RESULTS & SIGNIFICANCE

We expect causal feature visualisations and audio examples revealing which frequency-time regions drive bird event detection. This represents the first application of REX to bioacoustic event detection, providing an interpretable validation framework for few-shot models on bio-acoustic audio data.

VI. ACKNOWLEDGMENTS

David A. Kelly was supported by CHAI—the EP-SRC Hub for Causality in Healthcare AI with Real Data (EP/Y028856/1). Sensing the Forest receives funding from the UKRI Arts and Humanities Research Council (AH/X011585/2).

VII. REFERENCES

- DCASE, "Few-shot Bioacoustic Event Detection DCASE," https://dcase.community/challenge2024/task-few-shot-bioacousticevent-detection.
- [2] H. Chockler, D. A. Kelly, D. Kroening, and Y. Sun, "Causal explanations for image classifiers," arXiv preprint arXiv:2411.08875, 2024.
- [3] J. Y. Halpern, Actual Causality. The MIT Press, 2019.
- [4] M. T. Ribeiro, S. Singh, and C. Guestrin, ""Why should I trust you?" Explaining the predictions of any classifier," in *Knowledge Discovery and Data Mining (KDD)*. ACM, 2016, pp. 1135–1144.
- [5] S. M. Lundberg and S.-I. Lee, "A unified approach to interpreting model predictions," in *Advances in Neural Information Processing Systems* (NeurIPS), vol. 30, 2017, pp. 4765–4774.
- [6] L. Marino and A. Xambó Sedó, "Developing DIY Solar-Powered, Off-Grid Audio Streamers for Forest Soundscapes: Progress and Challenges," CHIME Annual Conference 2024, 2024.
- [7] A. Xambó Sedó, P. Batchelor, L. Marino, G. Roma, M. Bell, and G. Xenakis, "Soundscape-based music and creative AI: Insights and promises," *UKAIRS* 2025, 2025.
- [8] J. Liang, I. Nolasco, B. Ghani, H. Phan, E. Benetos, and D. Stowell, "Mind the Domain Gap: A Systematic Analysis on Bioacoustic Sound Event Detection," Mar. 2024.